

JASPER THE UNFRIENDLY LOADER

The cyber threat intelligence team at Solis continues to track new and emerging malware families and
ransomware that often target various industries. We recently collaborated with SentinelOne and Stairwell on a
newly discovered loader, JasPer Loader, that has been observed loading IcedID and a second-stage shellcode
downloader. The presence of this malware running in an environment could lead to significant damage and
could allow an adversary to load additional malware into a target network.

 JasPer Loader is a lightweight Dynamic Link Library (DLL) file that mimics legitimate software based on
JasPer, a collection of software (i.e., a library and programs) for the coding and manipulation of images1. The
DLL has been trojanized to contain an encrypted payload that is executed upon calling an added export to
the DLL.

 The DLL is password protected and will not function without a user-provided key. Additionally, hard-coded
keys are utilized to further protect staged payloads and the embedded C2 address from signature-based
detection.

 The loader is designed to be configurable, as it is able to execute an arbitrary DLL payload hosted at an
arbitrary staging URL. In this case, the third-party file sharing site qaz[.]im was utilized to host the staged
payload.

Solis worked with Stairwell and SentinelOne to carry out a collaborative analysis to learn more about JasPer
Loader’s capabilities. A SentinelOne Active Response (STAR) Rule was created by Solis and validated by
SentinelOne to detect and mitigate this malicious loader from running. In addition, a YARA rule was created by
Stairwell to detect and identify the presence of this malware. Further details regarding how this malware works
can be found below.

STATIC ANALYSIS

A static analysis was conducted on a sample of JasPer Loader with a filename of JasPer.dll and a SHA256

hash of 78bb0fd18def2602188ca0004ac5428ed039b8abef4926c7e9e9b908a1efa5b8. SentinelOne

observed that the DLL does contain legitimate code from JasPer and is a trojanized version of a DLL distributed
with ImageMagick, a widely used open-source project for editing and manipulating digital images2 .

The legitimate executable has a SHA256 hash of
1a9c8a4f300af28e12ff33d992deb4c8e203881b555c4b3e79d0c2e1605f3d7a.

1 https://jasper-software.github.io/jasper-manual/releases/version-2.0.33/html/index.html
2 https://imagemagick.org/index.php

The malicious executable contains an additional export, named Push, that contains the malicious functionality,

and contains the following PE metadata:

Field Value

ProductName JasPer JPEG v2 compression library

FileDescription ImageMagick library and utility programs

OriginalFilename JasPer

InternalName ImageMagick

FileVersion 1.701.0 (8 Feb 2004)

ProductVersion 1.701.0 (8 Feb 2004)

CompanyName Michael David Adams

LegalCopyright Copyright © 2001-2003 Michael David Adams

Comments http://www.ece.uvic.ca/~mdadams/jasper/

LangID 040904B0

Charset Unicode

Language English (United States)

PDB Path
E:\repo\ImageMagick\ImageMagick-
6.9.3\vc14\x64\bin\CORE_RL_jp2_.pdb

Compile Time 2016-03-27 16:02:52

Table 1: PE Metadata

The trojanized DLL successfully evaded detection by all AV vendors on VirusTotal when it was initially uploaded
on March 29, 2023.

Figure 1: Initial Detections

FIRST-STAGE: DLL

Upon execution, the DLL attempts to perform XOR decryption of second-stage shellcode stored in the .rsrc

directory. The DLL does so by expecting a key to be passed as an argument to the exported function Push with

the command line argument /k. Note that this means that the DLL is most likely meant to be run using a

command line tool such as Rundll32.exe.

Using the provided command line key, the loader decrypts the second-stage shellcode in a buffer in memory
and calls the shellcode to begin execution. In the case of this sample, the password that must be provided to
properly decrypt the second-stage shellcode is the string Pro9lom.The decryption of the second-stage

payload in this sample can be replicated with the following one-liner in Binary Refinery3:

emit 78bb0fd18def2602188ca0004ac5428ed039b8abef4926c7e9e9b908a1efa5b8 |

vsect .rsrc |
snip 0x624:0x2593 |
xor Pro9lom |
peek

Figure 2: Shellcode Decryption in Binary Refinery

SECOND-STAGE: SHELLCODE

Following the above execution chain, the DLL executes the decrypted shellcode, which acts as a downloader
that utilizes a staging URL hosted on at qaz[.]im. The website qaz[.]im is an anonymous email, paste, and file

sharing provider, allowing users to host files for 24-hour periods before deletion.

3 https://github.com/binref/refinery

Notably, the threat actor utilized google translate’s website feature4, which generates a translated view of the
webpage and generates a link to the translated view with the domain translate[.]goog. This is likely to

bypass domain reputation checks, as a request to Google’s infrastructure is less anomalous than an anonymous
paste site. The staging URL is also embedded within the .rsrc section of JasPer Loader, and is decrypted with

a hard-coded, 4-byte XOR key: 4D 95 0A 00. The full, decrypted URL has been included below:

hxxps[:]//qaz-im[.]translate[.]goog/load/3Thihz/ce371842-bcf0-4cd8-b22e-
6f82b4e9107f?_x_tr_sl =auto&_ x_tr_tl =en&_x_tr_hl=ru&_x_tr_pto=wapp

The decryption of the embedded staging URL can be replicated with the following one-liner from Binary
Refinery:

emit 78bb0fd18def2602188ca0004ac5428ed039b8abef4926c7e9e9b908a1efa5b8 |
vsect .rsrc |
snip 0x2593:0x2616 |
xor h:4D950A00 |
peek

Figure 3: Staging URL Decryption in Binary Refinery

At the time of analysis, the 24-hour expiration for the staged payload had already expired.

Figure 4: Staging Website

4 https://translate.google.com/?op=websites

While no staged payload was observed, the shellcode’s functionality reveals features about the staged
payload. The code expects the staged payload to be XORed with the key 91 17 A8 04 and contain structured

data containing the following strings:

 "/object/"

 "<content>"

 "<export>"

 "<params>"

 "<name>"

 "<drop_disk>"

 "<frd_dll>"

The shellcode will parse the structured data and execute the payload according to options specified. The
shellcode expects the payload to be a PE file and can either load the file into memory and execute it, including a
specific exported function from a DLL, or it can write the file to the %TEMP% directory.

CONCLUSION AND RELATED SAMPLE
This loader is relatively simple but robust enough to execute arbitrary payloads so long as they are in the correct
format and appears to be under ongoing development. Due to the small number of samples at this time, it is
unclear whether this is a single group’s proprietary loader or if this is a loader incorporated into the larger eCrime
economy. SentinelOne identified a related sample of JasPer Loader that contains an embedded IcedID
payload5 instead of a downloader shellcode, but at this time there is not enough information to assess whether
this loader is developed by the same actor as IcedID. The developer of this loader is capable enough to exhibit
a deep understanding of common static analysis techniques as well as to evade detection by all major AV
vendors on VirusTotal at the time of upload.

The details of the related file that loads IcedID are as follows:

Field Value

SHA256 f41ea8e983c0e9e63eb3b0066eab277c45841f0c38f741e7486e846313b8c042

C2 Domains afrakonla[.]com
pinchersoftqum[.]com

5 https://tria.ge/230310-an7gyacf5x

Campaign ID 607958445

Table 2: IcedID JasPer Loader Sample Details

ACCOLADES
Solis would like to give a special thank you to RedSense for their assistance in this analysis. Stairwell was also
instrumental in being able to create a YARA detection rule based on the malware analysis that they provided on
this file. The SentinelOne Rule was created by Solis, and it was validated by SentinelOne for proper detection
and mitigation for environments that run SentinelOne Endpoint Security. Due to this collaborative effort, we
were able to alert the wider security community in detecting and protecting against malware like this.

Att&CK Tactic Technique

Defense Evasion T1027 Obfuscated Files or Information

Execution T1129 Shared Modules

Staged Capabilities T1608 Resource Development (sub-technique)

Command and
Control

T1105 Ingress Tool Transfer

Defense Evasion T1620 Reflective Code Loading

Defense Evasion T1036 Masquerading

Table 3: MITRE Att&CK Tactics

INDICATORS OF COMPROMISE

Att&CK Tactic Technique

SHA256: f41ea8e983c0e9e63eb3b0066eab277c45841f0c38f741e7486e846313b8c042

SHA256: 78bb0fd18def2602188ca0004ac5428ed039b8abef4926c7e9e9b908a1efa5b8

URL hxxps[:]qaz-im[.]translate[.]goog/load/3Thihz/ce371842-bcf0-4cd8-b22e-
6f82b4e9107f?_x_tr_sl =auto&_ x_tr_tl =en&_x_tr_hl=ru&_x_tr_pto=wapp

Domain afrakonla[.]com

Domain pinchersoftqum[.]com

SOLIS DETECTION RULE

The listed detections were created to detect this malware running in SentinelOne EDR environments.

Note: The above query is not suitable for usage as a STAR Rule, given that some false positive alerting can
trigger.

Query:

(Name Contains Anycase "rundll32" AND CmdLine In Contains Anycase ("Push /k")) OR (
TgtFileInternalName Contains "ImageMagick" AND TgtFileDescription Contains "ImageMagick library
and utility programs")

STAR Rule:

Name Contains Anycase "rundll32" AND CmdLine In Contains Anycase ("Push /k")

STAIRWELL YARA RULE

The posted YARA rule was created by Daniel Mayer at Stairwell whose analysis contributed to building a YARA
detection rule for this malware.

YARA Rule

rule JasPer_Downloader
{
 meta:
 author = "Daniel Mayer (daniel@stairwell.com)"
 description = "A rule for detecting JasPer loader"
 version = "1.0"
 date = "2023-03-30"
 sha256 = "78bb0fd18def2602188ca0004ac5428ed039b8abef4926c7e9e9b908a1efa5b8"

 strings:
 // shellcode payload
 $decrypt1 = {
 FF C0 // inc eax
 48 98 // cdqe
 41 FF C1 // inc r9d
 8A 4C ?? ?? // mov cl, ??
 30 0A // xor [rdx], cl
 48 FF C2 // inc rdx
 49 83 E8 01 // sub r8, 1
 }

 $decrypt2 = {
 FF C0 // inc eax
 48 98 // cdqe
 41 FF C1 // inc r9d
 8A 8C ?? ?? ?? ?? ?? // mov cl, ??
 30 0A // xor [rdx], cl
 48 FF C2 // inc rdx
 49 83 E8 01 // sub r8, 1
 }

 // file on disk
 $decrypt_enc_buffer = {
 4C 8B C1 // mov r8, rcx
 33 D2 // xor edx, edx
 8B C6 // mov eax, esi
 41 F7 F6 // div r14d
 FF C6 // inc esi
 8A 44 ?? ?? // mov al, ??
 41 30 00 // xor [r8], al
 49 FF C0 // inc r8
 }

 condition:
 any of them
}

